Researchers Use Machine Learning To Create a Fabric-Based Touch Sensor

A new study from NC State University is combining machine learning with three-dimensional embroidery techniques to create a fabric-based sensor that can control electronic devices through touch.

Long Story, Cut Short
  • The idea is still in its early stages as existing embroidery technology is not capable of easily handling the types of materials used in the creation of the sensor.
  • It is critical to get the three-dimensional structure of the sensor right.
The device needs to be able to tell the difference between gestures assigned to different functions, as well to disregard any unintentional inputs that might come from the cloth’s normal movement.
Smart Device The device needs to be able to tell the difference between gestures assigned to different functions, as well to disregard any unintentional inputs that might come from the cloth’s normal movement. North Carolina State University

Researchers have combined three-dimensional embroidery techniques with machine learning to create a fabric-based sensor that can control electronic devices through touch.

  • As the field of wearable electronics gains more interest and new functions are added to clothing, an embroidery-based sensor or “button” capable of controlling those functions becomes increasingly important. Integrated into the fabric of a piece of clothing, the sensor can activate and control electronic devices like mobile apps entirely by touch. 
  • The research was carried out by a team at the NC State University, US. The paper, ‘A clickable embroidered triboelectric sensor for smart fabric’, has been published in Device.
  • The idea is still in its early stages as existing embroidery technology is not capable of easily handling the types of materials used in the creation of the sensor.

THE DEVICE: The device is made up of two parts; the embroidered pressure sensor itself and a microchip which processes and distributes the data collected by that sensor. 

  • The sensor is triboelectric, which means that it powers itself using the electric charge generated from the friction between its multiple layers. 
  • It is made from yarns consisting of two triboelectric materials, one with a positive electric charge and the other with a negative charge, which were integrated into conventional textile fabrics using embroidery machines.
  • The three-dimensional structure of the sensor was important to get right.

HOW IT WORKS: Data from the pressure sensor is then sent to the microchip, which is responsible for turning that raw input into specific instructions for any connected devices. Machine learning algorithms are key to making sure this runs smoothly. 

  • The device needs to be able to tell the difference between gestures assigned to different functions, as well to disregard any unintentional inputs that might come from the cloth’s normal movement.
  • Sometimes the data that the sensor acquires is not accurate, which can happen for many reasons. By using machine learning, the researchers trained the device to recognise the inputs.
  • The researchers demonstrated the input recognition by developing a simple music playing mobile app which connected to the sensor via Bluetooth. They designed six functions for the app: play/pause, next song, last song, volume up, volume down and mute, each controlled by a different gesture on the sensor. Researchers were able to use the device for several other functions, including setting and inputting passwords and controlling video games.

WHAT THEY SAID:

Because the pressure sensor is triboelectric, it needed to have two layers with a gap in between them. That gap was one of the difficult parts in the process, because we are using embroidery which is usually two-dimensional. It’s a technique for decorating fabric… It’s challenging to make a three-dimensional structure that way. By using a spacer, we were able to control the gap between the two layers which lets us control the sensor’s output.

Rong Yin (Corresponding Author)
Wilson College of Textiles
NC State University

 
 
  • Dated posted: 19 April 2024
  • Last modified: 19 April 2024